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ABSTRACT

In this study, we propose a physical-process-based stochastic parameterization scheme using cellular

automata for NOAA’s Next Generation Global Prediction System. The cellular automata, used to

simulate stochastic processes such as the production and destruction of subgrid convective elements,

are conditioned on unresolved vertical motion that follows a prescribed stochastically generated

skewed distribution (SGS). The SGS is described by a stochastic differential equation and linked to

observations by taking into account the first four moments from an observed dataset. In the proposed

parameterization framework, we emphasize the need for a dynamical memory term to be included

in physical-process-based stochastic parameterizations, and we illustrate the requirement for the dy-

namical memory using the Mori–Zwanzig formalism. Although this paper focuses on the methodology,

early results indicate that if we apply our stochastic framework to deep cumulus convection, it is found

that the frequency distribution of precipitation is improved in a single-member stochastic forecast, and

some improved spread–skill relationship in ensemble runs can be found in state variables in the tropics,

as well as in the subtropics.

1. Introduction

In numerical weather prediction (NWP), a set of

nonlinear partial differential equations of fluid and ther-

modynamics are solved in order to predict the state of

the atmosphere in the future, given an analysis of the

present state of the atmosphere. Numerical methods

are used to solve the equations on a discrete grid, and

physical processes that are not resolved on the given

grid or in time need to be represented by a parame-

terization. These approximations imply that even if a

perfect initial condition could be provided to solve the

equations, errors in weather and climate forecasts are

inevitable. Over the past two decades, various stochastic

parameterization schemes have been developed and

applied at operational NWP centers around the world

to address model uncertainty associated with model

discretization and parameterization [e.g., Berner et al.

(2017) and references therein].

The persistent interaction between resolved and

unresolved dynamics and physics is often larger than

can be represented by treating the stochastic term and

the resolved dynamics as independent terms in a model.

There are several ways of treating the effect of this lin-

gering interaction, depending on the system at hand.

One way is to stochastically approximate the dynamical

system that allows memory of the subgrid dynamics

on the resolved variables, a procedure referred to as

‘‘homogenization’’ (see, e.g., Gardiner 1985). In fact,

as demonstrated by Gottwald et al. (2017), the homog-

enization technique can be expressed for the Mori–

Zwanzig formalism, which has recently been regarded

as useful for illustrative purposes because the dynamical

memory and subgrid stochastic perturbations occur as

separate terms (e.g., Evans and Morriss 2008; Franzke

et al. 2015). A stochastic perturbation to themodel-state

tendency due to unresolved dynamics and physics at

time t can be expressed under the Mori–Zwanzig for-

malism as the sum of two terms:
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�
›x0

›t

�
subgrid

5 dynamical memory

1 subgrid stochastic perturbation. (1)

Two examples of this expression in a reduced form are

the widely used stochastically perturbed physics ten-

dencies (SPPT; Buizza et al. 1999; Palmer et al. 2009)

and stochastic kinetic energy backscatter (SKEBS; Shutts

2005) schemes, developed at the European Centre for

Medium-RangeWeather Forecasts (ECMWF). In both

these schemes, dynamical memory is approximated by a

deterministic dissipation term, and subgrid stochastic

perturbations are approximated by a Wiener process.

In this paper, we develop a model framework that ad-

dresses the subgrid stochastic perturbation term through

process-level perturbations on the model subgrid. How-

ever, the dynamical memory—or the large-scale spatial

and temporal correlations of noise—is a crucial term in

order to address the fact that local perturbations in

physical processes have a memory in time and are influ-

enced by scales far beyond the truncation of the model

(e.g., Palmer 2001; Shutts 2013; Arnold et al. 2013;

Ollinaho et al. 2017). Therefore, we cannot neglect this

term in our development of a process-based stochastic

parameterization, and we propose a framework in which

we first perturb physical processes that contribute to the

physics tendency and then perturb the physics tendency

itself, using large-scale temporal and spatial correlations

to address the fact that this state is dependent on the

model state at earlier times.

We first present a discussion on dynamical memory,

using the Mori–Zwanzig formalism to illustrate the es-

sential terms in the stochastic parameterizations of un-

certainties in subgrid dynamics. The aim is to make a

connection between the theory that is well established

in the literature of statistical physics and the stochastic

physics parameterization development for NWP. In

particular, we aim to argue why relatively large corre-

lation scales are needed to address uncertainties asso-

ciated with physical processes on the model’s subgrid.

a. Dynamical memory

Stochastic models are often used to describe multiscale

systems. In such models, resolved variables represent

slow-system degrees of freedom, while noise represents

the unresolved degrees of freedom that are assumed to

vary rapidly. Often, the fast and slow variables in these

models are represented as uncorrelated. However, such a

formalism might neglect the interactions between fast

and slow variables that can depend on the history, or

dynamical memory, of this interaction. We illustrate the

existence of dynamical memory below.

The Mori–Zwanzig formalism is well established in the

literature of statistical physics and is applicable when ex-

ternal forcing does not depend on time (see, e.g., Evans

and Morriss 2008). This formalism has recently been sug-

gested as a theoretical foundation of stochastic param-

eterization development in climate modeling (see, e.g.,

Franzke et al. 2015). The Mori–Zwanzig projection op-

erators project onto the linear subspace of slow-phase

space functions, and the definition of such a projection

allows separation of the Liouville equation by projec-

ting onto the slow and the fast subspaces, which can be

used to derive a reduced model in the form of a gen-

eralized Langevin equation. This is helpful in demon-

strating how stochastic noise interacts with the resolved

dynamics through a memory term. We will summarize

the steps to get to the general Langevin equation be-

low, while readers are referred to Evans and Morriss

(2008), Givon et al. (2004), Gottwald et al. (2017), and

Chorin and Hald (2013) for a more comprehensive

derivation.

Amodel representing the nonlinear atmospheric system

might be written as

_x5M(x(t)), x(0)5 x
0
, (2)

where t is time, the dot denotes a time derivative, andM

is the functional representation of the model. Themodel

state x is partitioned into the resolved (x̂) and unre-

solved (~x) parts (i.e., x5

�
x̂
~x

�
). Following Gottwald

et al. (2017), one can rewrite Eq. (2) as the so-called

Liouville equation, which is a linear partial differential

equation. By first defining the Liouville operator (using

tensor notation)

L5M � =5M
i
›
xi
,

theLiouville equation associatedwith themodel expressed

by Eq. (2) can be used to describe an observable z(x, t)

in the following form:

›z/›t5Lz(x, t), with initial condition: z(x
0
, 0)5 a(x

0
) .

(3)

It can be shown that the solution ofEq. (3) is z(x, t)5 a(x),

where x5 x(t) is the solution of Eq. (2) with initial con-

dition x0. That is, if one can solve Eq. (3) for every ai, one

can set ai 5 x0i and obtain the ith component of x(t) for

every i.

Using the Mori–Zwanzig projection operators with

so-called semigroup notation (Chorin and Hald 2013),

the solution of Eq. (3) can then be expressed as

z(x, t)5 etLa(x)5 etL(P1Q)a(x) ,
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where P is a projector to map z to the slow variables x̂,

andQ5 12P is a projector tomap z to the fast variables
~x. The orthogonality between P and Q is assumed for

illustrative purposes, which is consistent with the prac-

tice of representing a model state as a point in a phase

space to describe the model dynamics.

Following Givon et al. (2004) and Gottwald et al.

(2017), one can then obtain

_̂x5 etLPLx̂
0
1

ðt
0

e(t2s)LPLesQLQLx̂
0
ds1 etQLQLx̂

0
. (4)

Equation (4) is exactly the same as Eq. (2), but in the

form of the generalized Langevin equation.1 The first

term in Eq. (4) is the dynamics of the resolved variables;

the second term represents the ‘‘memory’’ term because

it is an integration of quantities that are dependent on

the model state at earlier times; and the third term is often

called the ‘‘noise’’ term, representing the unresolved dy-

namics that is orthogonal to the resolved dynamics. Note

that Eq. (4) applies to both deterministic and stochastic

parameterizations. When applied to stochastic param-

eterizations, the sum of the last two terms in Eq. (4)

represents the stochastic perturbation to the model-

state tendency due to unresolved dynamics and physics

that is introduced in Eq. (1).

The notion that there is an uncertainty at the subgrid

scale, which consists of past uncertainty projected onto the

current state, has also been discussed in the literature in

terms of up- and downscale cascade of error growth. In

the Lorenz (1969) idealizedmodel framework for a system

with a background kinetic energy spectrum that follows a

k25/3 power law, where k is the horizontal wavenumber,

there is an insensitivity to the scale of the initial errors

(Rotunno and Snyder 2008).As summarized byWeyn and

Durran (2017, p. 2191), ‘‘This arises because large-scale

errors propagate downscale very rapidly, which in turn

saturate the error in the smallest scales, and then propa-

gate back upscale as if they had simply been originated at

the small scales.’’ In a global NWP model, however, such

a k25/3 power law is not realized with grid spacings of;25

to ;50km, as the mesoscale motions are not resolved.

Thus,model error generated by subgrid-scale perturbations

alone will not effectively propagate to the larger scales.

Furthermore, Durran and Gingrich (2014), Durran

and Weyn (2016), and Weyn and Durran (2017) have

shown that even when a k25/3 power law exists in the KE

spectrum, for certain weather regimes (i.e., U.S. snow-

storm, deep moist convection, or mesoscale convective

systems), it is difficult to identify such an upscale cascade of

error growth. They state that the initial-condition pertur-

bations that initially were strongest at the longest wave-

lengths ‘‘tended to grow simultaneously at all wavelengths,

rather than through an upscale cascade, and that the error

growth is rather ‘up amplitude’ than through a cascade

from the smallest scales’’ (Weyn andDurran 2017, p. 2191);

this is in line with the results we find in our present study.

In our framework, we do not simulate Eq. (4) exactly.

However, we try as much as possible to implement the

spirit of including each term. The first term is the re-

solved model. The last term, which represents the subgrid-

scale effect on the large scale, is modeled as a combination

of a cellular automaton and stochastic differential equa-

tions, the details of which will be provided below. The

middle term represents the integrated effects of these

subgrid-scale processes on the resolved dynamics. To

some extent, this ‘‘memory’’ is included with the de-

tails of the cellular automaton setup, which allows

intergrid information to propagate. However, the cross-

boundary effects of the cellular automata are not suffi-

cient to account for the integrated effect, so we supply

an additional memory of subgrid effects by means of a

first-order autoregressive process (AR(1)) perturbation

to the tendencies. For the time being, we use the SPPT

method to incorporate AR(1) in perturbations upon the

tendencies from the physical parameterizations.

In SPPT, the model uncertainty due to physical param-

eterizations is represented by perturbing the net tenden-

cies from the physical parameterizations of radiation,

cloud physics, vertical diffusion, gravity wave drag, and

convection by multiplicative noise as�
›x0

›t

�
subgrid

5 (11mr)
›x

›t
. (5)

Here, x is the wind, temperature, or humidity of the nu-

merical weather model; m 2 0, 1 tapers the perturbations

to zero near the surface and in the stratosphere; and r is

the first-order autoregressive AR(1) process for evolving

spectral coefficients:

r (t1Dt)5fr (t)1 rh (t) , (6)

where f5 exp (2Dt/t) controls the correlation over time

step Dt, and spatial correlations (Gaussian around the

globe) for each wavenumber define r for white random

numbers h; t is the temporal decorrelation scale.

Given the importance of the memory term as pre-

sented in this section, in our present development de-

scribed in this paper, we adapt the perturbation on the

1A general Langevin equation is a stochastic integro-differential

equation relating the particle’s acceleration to its velocity history

and to fast fluctuations in the fluid environment (see, e.g., Hohenegger

and McKinley 2017). The original Langevin equation describes

Brownian motion, which is a special case of the general Langevin

equation.
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tendencies following Eq. (5) from the SPPT scheme in

order to include dynamical memory in our perturba-

tions. The subgrid-scale perturbations are generated by

cellular automata, which also to an extent exhibit de-

correlation time scales through their self-organizational

properties. In this development, we address mixing from

deep cumulus convection only; however, we envision

expanding the framework to also address uncertainties

associated with physical processes such as turbulence,

shallow convection, in-cloud microphysics, and radi-

ation. This means that in our development, ›x0/›t is the
tendency due to convection only; thus, following the

notation of Christensen et al. (2017), we call this in-

dependent (convection only) tendency perturbation

‘‘iSPPT (conv).’’

b. Subgrid stochastic perturbation

The most common method to parameterize cumulus

convection in today’s weather and climate models is

based on the mass flux concept that was first formulated

by Ooyama (1971), Yanai et al. (1973), and Arakawa

and Schubert (1974). In the bulk mass flux concept, a

single steady-state updraft is assumed to represent

the effects of all active cloud elements in a grid box,

averaged over the different stages of their life cycle.

As the horizontal resolution of the NWP model in-

creases, however, the finite number of convective up-

drafts within a grid box will generally be reduced. At

;10–15-km horizontal resolution, there may be about

one active cloud element on average, although most

realizations will very likely contain more or fewer cloud

elements than this number. The ensemble-averaged ef-

fects of the subgrid cloud fieldmay thus be very different

from those of a particular realization; hence, the subgrid-

scale variability should be sampled, rather than repre-

sented by an ensemble mean (Plant et al. 2015; Monahan

and Culina 2011). To this end, a number of studies have

explored whether stochastic approaches for deep con-

vection can be used to mimic statistical fluctuation in

cloud numbers and intensities (e.g., Lin and Neelin 2002;

Bright and Mullen 2002; Grell and Dévényi 2002; Byun
and Hong 2007; Plant and Craig 2008; Khouider et al.

2010; Tompkins and Berner 2008; Dorrestijn et al. 2013;

Gottwald et al. 2016; Frenkel et al. 2013; Bengtsson et al.

2013; Sakradzija et al. 2016; Shutts 2015).

Craig and Cohen (2006a) used a statistical mechanics

method to investigate the equilibrium fluctuations of

convective cloud properties (such as mass flux) around

an average taken over a limited region of convective

clouds. It was hypothesized that the distribution of

cloud number within a given area should follow that

of a Poisson distribution, an idea that was supported

through analysis of equilibrium cloud-resolving model

simulations (Craig and Cohen 2006a; Cohen and Craig

2006b; Plant and Craig 2008; Plant et al. 2015). In recent

years, stochastic birth/death models for cloud population

have been explored within the NWP community. Such

models are useful for simulating competing processes

seen in nature, such as production versus dissipation,

and the distribution of the population is Poisson-like.

Plant (2012) proposed an idealized stochastic model

framework of the cloud population in a grid box using a

so-called master equation to evolve the probability dis-

tribution of convective cloud properties. In that study,

transition probabilities representing births and deaths as

well as environmental destabilization and stabilization

were used to evolve the master equation. In a similar

framework, Hagos et al. (2018) also considered a prob-

abilistic representation for the nonequilibrium dynamics

of cloud populations to predict the spectrum of cloud

sizes and their evolution due to a given forcing.

Khouider et al. (2010), Dorrestijn et al. (2013, 2015,

2016), Gottwald et al. (2016), and Frenkel et al. (2013)

also use birth/death processes to describe the population

of clouds within a finite area. In these studies, Markov

chains were used, and transition probabilities were given

to model how a cloud can transition between different

cloud types within a model grid box. In Dorrestijn et al.

(2016), the population of these cloud types averaged

over the area (model grid box) was then used to pro-

vide the convective area fraction for computing the con-

vective mass flux at cloud base in the SPEEDY model.

Closely related is the work by Bengtsson et al. (2011,

2013) and Bengtsson and Körnich (2016), where birth/

death processes from cellular automata were used on the

subgrid of the NWP model grid. The self-organizational

nature of the cellular automaton allows for subgrid el-

ements to form clusters not only on the subgrid, but also

across the NWP model grid boundaries, allowing for

communication of the cellular automaton across adja-

cent NWP grid boxes. In Bengtsson et al. (2013), the

convective area fraction is given by the fraction of the

cellular automaton cells that are ‘‘alive’’ within a grid

box, which is further used in the prognostic equation of

area fraction in the ‘‘3MT’’ deep convection scheme of

the European regional ALARO model (Gerard et al.

2009; Termonia et al. 2018). Together with a prognostic

equation for the updraft vertical velocity, the updraft

area fraction modulated by the cellular automaton

yields the mass flux.

In this study,we take advantageof the self-organizational

properties of cellular automaton described by Bengtsson

et al. (2013) to represent the subgrid stochastic term in

Eq. (1).We divide the NWPmodel’s grid box into several

subgrid elements and let the cellular automata act on this

finer grid, such that the cellular automaton cells represent
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subgrid convective cloud elements. Physically, the exis-

tence of competing birth/death processes in the cellular

automaton model is critical to make the distribution of

the convective cloud numbers a skewed distribution.2

We use this distribution to provide, in a stochastic man-

ner, the number of subgrid convective plumes in the deep

convection parameterization of the model. An advantage

of the cellular automaton model as implemented is that

through its self-organization, subgrid cells can be triggered

in an adjacent NWP model grid box, allowing for hori-

zontal communication of the deep convection scheme,

which is otherwise column based.

The transition rules of the cellular automaton are con-

ditioned on a stochastically perturbed large-scale state,

where the perturbations are given by a general class of

non-Gaussian distributions called stochastically gener-

ated skewed (SGS; Sardeshmukh et al. 2015). The SGS

probability density function can be associated with a

stochastically perturbed damped linear Markov process

and formulated as a stochastic differential equation.

Thus, by using an SGS distribution for the perturbations

of the large-scale model field, we do not have to sample

from an existing PDF, but can rather use the stochas-

tic differential equation directly for the perturbations.

Furthermore, the distribution provided by the stochastic

differential equation is made to be realistic by pre-

scribing the first four moments of the distribution from

high-resolution LES simulations or observational data.

We refer to this approach asCA-SGS, where the idea is

to provide a physically based stochastic estimate of the

subgrid variability of convection and introduce subgrid-

scale organization.We explore the idea of using CA-SGS

in one of the cumulus convection schemes developed for

NOAA/NCEP’s next-generationGlobal Forecast System

(GFS), as described in the next two sections.

2. Cellular automata and stochastically generated
skewed distribution (CA-SGS)

A cellular automaton is a simple mathematical model

useful for simulating the behavior of complex physical

systems exhibiting competing processes, such as pro-

duction versus dissipation of cumulus convection. In the

cellular automata, space and time are discrete, and the

state of a cell at the next time step depends on the state

of its neighborhood at the current time step. Transition

rules to evolve a cell from one state to another, based

on the state of the neighborhood, are prescribed. This

transition rules can be given either as a Boolean condi-

tion or as real numbers representing the probability for a

cell tohaveagiven state [latticeBoltzmannmethod (LBM)].

The latter has been shown to be successful for modeling

high Reynolds number flows (Chopard and Droz 1998).

As elaborated on by Berner et al. (2017), applications

of cellular automata for NWP have previously been

explored within the atmospheric science community.

In Berner et al. (2008), cellular automata were used

as a stochastic pattern generator for SKEBS based on an

initial idea presented by Palmer (2001) and, as described

above, byBengtssonet al. (2013) andBengtssonandKörnich
(2016) for use as a stochastic parameterization of cumulus

convection. In all of these studies, the updating rules of the

cellular automaton are referred to as ‘‘generations,’’ which is

an extension to the famous cellular automaton ‘‘gameof life’’

(proposed first by J. Conway in 1970); the intent is that

the spatial and temporal scales and the continuous self-

organization mimic the scales and the behavior observed

from organized deep convection in the atmosphere.

In this study, we stay within the ‘‘generations’’ family

of cellular automata in that we use a deterministic ruleset

for the ‘‘birth’’ and ‘‘survival’’ of a cell on the subgrid of

the NWP model grid following Conway’s game of life.

However, an important difference from Bengtsson et al.

(2013) and Bengtsson and Körnich (2016) is that the

ruleset is conditioned on a stochastically perturbed

large-scale state, described below. The reason why we

choose to condition the cellular automata on a per-

turbed large-scale state rather than the gridbox mean

of this state is to capture the subgrid variability of un-

resolved motion and to be able to inform our de-

velopment of stochastic physics from observations. In

addition, this transition condition for the cellular au-

tomaton adds a stochastic component in its evolution,

compared with a strictly Boolean ruleset. The condi-

tion for our cellular automaton consists of subgrid per-

turbations of level-mean large-scale vertical velocity

W and/or specific humidity q, with perturbations sam-

pled from an SGS probability density function (PDF;

Sardeshmukh et al. 2015). At the initial time, an active

cellular automaton cell on the subgrid is then defined

as the perturbed vertical velocity larger than a given

threshold. Here, W is the gridbox mean vertically

averaged velocity between the surface and 350 hPa

from our NWPmodel. This large-scale state was chosen

2 Evolution equations including birth and death processes are

commonly used to describe the evolution of population charac-

teristics, including population size distributions. Examples for

convective cloud population are presented by Plant (2012) and

Hagos et al. (2018). Another prominent example is the kinetic

equation describing cloud particle size evolution [see, e.g., chapters

13 and 14 in Khvorostyanov and Curry (2014)]. There is no general

solution to this equation, but special solutions can be expressed as

skewed distributions. In fact, it can be shown that a special solution

to the CA evolution equation used in the CA-SGS scheme is a

Poisson distribution [see, e.g., chapter 8 in Toral and Colet (2017);

Schulman and Seiden (1978)].
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following Dorrestijn et al. (2016) because it is known to

have a very high correlation with deep convection ac-

tivity (Peters et al. 2013; Davies et al. 2013)

In this study, we modify the SGS distribution to rep-

resent the interaction between the dynamical noise with

the mean state and its effect on the anomalies. In the

example of gridbox mean of the level mean vertical

velocity, we add Wt from the NWP model into Eq. (10)

of Sardeshmukh et al. (2015), which now takes a slightly

modified form:

dW 0
t 52

��
11

1

2
E2

�
W 0

t
1

1

2
E3 [g1E (W

t
2W

t21
)]

�
ldt 1 fbh

1
1 [EW 0

t
1 g1E (W

t
2W

t21
)]h

2
g
ffiffiffiffiffiffiffi
ldt

p
. (7)

Here, E, g, and b are the parameters of the distribution,

h1 and h2 are random Gaussian variables with zero mean

and unit variance that are uncorrelated both spatially and

temporally, Wt21 is the vertical velocity kept from the

previous time step, and l is a damping time constant

viewed as a tuning parameter of the system. The differ-

ence fromSardeshmukh et al. (2015) is that the constant g

has been replaced by g1E (Wt 2Wt21) to ensure that

the subgrid vertical velocities are perturbed around the

current gridbox mean. Following Sardeshmukh et al.

(2015), the parameters E, g, and b can be determined

from the first fourmoments of an observed sample series

ofW 0
t . At the first time step, we assume (Wt 2Wt21)5 0

and simply set W 0
t 5 sh1 as a crude approximation (s is

the variance). Numerically, the equation is solved using a

predictor-corrector method (Rümelin 1982).

In our study, we use the first four moments of ver-

tical velocity from an observational dataset at Darwin,

Australia, to compute the parametersE, g, and b. Future

studies will include LES to compute the moments of

vertical velocity to assess the robustness of these ob-

servations. A value from the distribution is sampled in

each grid cell of the higher-resolution cellular automa-

ton grid, using different random values of h1 and h2 in

each cell.

In the case of level mean vertical velocity, Wt is

perturbed within each cellular automaton grid cell

following

W
p
5W

t
3

 
11

W 0
t

W
t

!
, (8)

and a convective element is definedwhereWp . threshold.

We do the same for specific humidity and explore the

effects herein of conditioning the cellular automaton

on a combination of these large-scale fields.

Figure 1 shows a schematic image of the cellular

automaton grid (thin blue lines) overlaying the NWP

model grid (thick gray lines). Each dark gray box repre-

sents a subgrid convective element (defined as Wp .
threshold), where the state of this element at the next

time step is determined using Conway’s game of life

rules modified to include conditioning onWp each time

step. Our cellular automaton is specifically described

as follows:

If the state of the cell is 0, a new cell is born if

Wp . threshold or if the cell has exactly two or

three neighbors meeting this criterion.

If the state of a cell is .1, it will survive if it has

exactly four or five neighbors with the criterion

Wp . threshold. Otherwise, the state will be reduced

by 1 from its assigned lifetime described below.

If a cell is born, it gets assigned a lifetime, which is an

integer value equal to h3 (nlives), where h is a

random number between 0 and 1, and nlives is the

maximum prescribed lifetime a cell can have.

Normally, in deep convection parameterizations, hori-

zontal communication only takes place via gridscale

circulations. However, in nature, small-scale processes

such as gravity waves and cold pool dynamics can act to

trigger and organize convection in a way not possible

by a one-dimensional plume model under a steady-state

assumption (Huang 1990; Mapes and Neale 2011). The

cellular automaton provides away to communicate across

neighboring NWP gridbox boundaries through its self-

organizational behavior. This is possible since the cellular

automaton grid acts on the subgrid of the numerical model

(Bengtsson et al. 2013). Other examples of parameteriza-

tion aimed to improve convective organization are those

of Mapes and Neale (2011), where rain evaporation was

used as a way of addressing convective memory, and

Grandpeix et al. (2010), who proposed a density current

parameterization to describe cold pools.

The distribution of convective elements on the sub-

grid depends on the chosen number of subgrid cells, the

threshold criteria, and the transition rules of the cellular

automaton (including which variable the cellular au-

tomaton is conditioned on and the choice of ‘‘lifetime’’

parameter). As a relevant example, we consider the case

where our CA-SGS is acting on subgrid mesh with 103
10 points per NWP model grid box and a threshold
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criterion of 0m s21. In Fig. 2a, the distribution of the

subgrid perturbations Wp from the SGS is shown on

the finer cellular automata grid, and in Fig. 2b, the distri-

bution of the subgrid number of convective elements

provided by our model is shown. The numbers are given

on the grid of the NWP model, and both distributions

are heavily skewed.

Furthermore, the evolution of the cellular automaton

pattern depends strongly on whether we condition the

transition from one state to another on a model field

such as vertical velocity, as can be seen in Fig. 3. In the

left panel is the cellular automaton averaged back onto

theNWPmodel grid after running freely, given an initial

condition of convective elements defined by our SGS

perturbed vertical velocity field. The initial condition is

lost after only a few time steps, and the pattern becomes

global and uniform in space. In the right panel is the

cellular automaton conditioned on perturbed vertical

velocity used to associate the pattern evolution with the

activity of convection, as given by the ruleset described

above. Clearly, the pattern is dominated by areas of

positive large-scale vertical velocity; however, within

the large-scale pattern, smaller-scale variability in the

pattern is present.

3. Coupling of the CA-SGS to the Chikira–
Sugiyama deep convection parameterization

NOAA GFDL’s finite-volume cubed-sphere (FV3)

dynamical core has been selected for the new Next

Generation Global Prediction System (NGGPS) atmo-

spheric model, and this dynamical core using updated

GFS model physics, hereafter referred to as FV3GFS,

will replace NOAA’s current GFS. One of the cumulus

parameterizations considered for the NGGPS is the

Chikira–Sugiyama convection scheme (Chikira and

FIG. 2. (a) SGS distribution and (b) distribution of convective subgrid plumes.

FIG. 1. Schematic image of the cellular automaton grid (blue grid) overlaid on the NWP

model grid (gray). Black cells indicate a cellular automaton state that is alive, whereas light blue

cells indicate a cellular automaton state that is dead.
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Sugiyama 2010). In this scheme, the entrainment rate

varies vertically depending on the surrounding envi-

ronment. An entraining plume model is adopted based

on Gregory (2001). Cloud types of different depths are

spectrally represented, following the spirit of the

Arakawa–Schubert scheme (Arakawa and Schubert

1974), according to different values of updraft velocity

at cloud base. Furthermore, the evolution of the cloud-

base mass flux for each plume type is predicted (rather

than being diagnosed) using a prognostic convective

kinetic energy closure (Randall and Pan 1993; Pan and

Randall 1998).

As part of its implementation into the FV3GFS

model, the scheme has been made scale adaptive,

given the framework of Arakawa and Wu (2013),

and has been tested together with the simplified

higher-order closure (SHOC) planetary boundary

layer (PBL) scheme described by Bogenschutz and

Krueger (2013) and the two-moment cloud micro-

physics scheme described by Morrison and Gettelman

(2008). This is the configuration of model physics used

in this study.

The Chikira–Sugiyama scheme, like any other pa-

rameterization of subgrid processes, approximates

the space–time average effect of many possible re-

alizations of the subgrid moist convection. While the

scheme is scale aware in that the space–time average

effect of subgrid moist convection diminishes as the

grid size decreases to subkilometer scales, the space–

time average approximation cannot represent the aver-

age effect of natural fluctuations of subgrid convection.

Therefore, a stochastic subgrid parameterization is

needed to account for the stochastic effect of the

fluctuations.

In the present implementation of the Chikira–

Sugiyama scheme in the FV3GFS model, a spectrum

of subgrid plumes is represented by different values

of vertical velocity at cloud base. The authors of the

scheme argue that cloud base properties influence the

vertical profiles of in-cloud properties, as well as cloud-top

height (a weaker upward motion of cloud air at cloud

base leads to larger entrainment rate and smaller in-cloud

moist static energy, thereby leading to a lower cloud

top (Chikira and Sugiyama 2010, p. 67). The spectrum

of cloud-base updraft velocities is assumed to first be

given from the minimum to the maximum with a fixed

interval, such as

W
base

5
N

N
max

3 (a2 b), fN5 1:N
max

g , (9)

whereN is the number of plumes, a and b are set to fixed

values to set the bounds of the range in the scheme, and

Nmax is the maximum number of plumes.

However, not all these possible plumes are generally

considered to be active by the scheme—the actual num-

ber depends on the degree of convective instability in the

environmental sounding.

Thus, if we want the CA-SGS model to provide the

number of plumes, we cannot simply replace the plumes

summed over in the Chikira–Sugiyama scheme, as this

depends on environmental conditions. Therefore, we use

the CA-SGS model to change the number of plumes by

perturbing the environment (triggering criteria), as well

as themaximumnumber of subcloud elementsNmax used,

which changes the interval of plumes used in Eq. (9).

In future developments, we plan to take advantage

of the subgrid cloud size distribution that is effectively

FIG. 3. Cellular automaton field averaged onto the NWP model grid. (left) The free-running cellular automaton

given the initial condition of subgrid plumes defined by the SGS distribution; (right) the cellular automaton con-

ditioned on SGS perturbed large-scale vertical velocity.
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given by the CA-SGS, associating each subgrid cluster

of convective elements with a particular cloud size

or radius. However, since the current spectral repre-

sentation of plume types in the current Chikira–Sugiyama

convection scheme does not consider cloud radius to in-

fluence the entrainment, we simply (as a first step) let the

number of active subgrid cloud elements from our

CA-SGS model alter the number of maximum cloud ele-

ments Nmax and then use it as a pattern to perturb the

environment. The self-organizational aspects of the cellu-

lar automata are still of value, as we will sum over more

cloud elements (and yield stronger updrafts) in areas

where there is more organization.

The Chikira–Sugiyama scheme does not have an ex-

plicit triggering criterion; the convection is active in re-

gions where the updraft vertical velocity, adapted from

Gregory (2001), is positive:

1

2

›ŵ2

›z
5 a (12C

�
)B , (10)

where ŵ and B are the updraft velocity and the buoy-

ancy of the cloud air parcel, respectively, and a and C�

are dimensionless constant parameters ranging from

0 to 1.

To perturb the environment, we adopt a method sim-

ilar to that proposed by Tompkins and Berner (2008)

to perturb parcel humidity in order to represent subgrid-

scale thermodynamic variability not accounted for by

using gridbox average quantities. Perturbing the bound-

ary layer humidity (and/or temperature), and thereby the

parcel buoyancy, will influence both the triggering and

the strength of convection. Furthermore, as discussed by,

for example, Tompkins and Berner (2008), Parsons et al.

(2000), and Lopez and Moreau (2005), boundary layer

humidity perturbations have greater effect than temper-

ature perturbations. Thus, for simplicity, we only consider

humidity perturbations. Other stochastic parameter-

izations addressing convective triggering include

modifications to the Kain and Fritsch cumulus parame-

terization (Kain 2004), by stochastically perturbing the

triggering condition, as in Bright and Mullen (2002) and

Song et al. (2007). Another method was explored by

Rochetin et al. (2014) using LES to analyze stochastic

aspects of the convection initiation in the Emanuel

(1991) parameterization.

In our scheme, instead of randomly sampling subgrid

humidity distributions provided by the cloud scheme

to perturb the parcel’s humidity (as in Tompkins and

Berner 2008), we utilize the CA-SGS distribution to

perturb the parcel humidity. For our perturbations to

the humidity field, we condition the cellular automaton

on vertical velocity and specific humidity in order to

have a pattern different from that used to perturb the

number of convective plumes. We use the pattern given

by averaging the cellular automaton cells back onto the

NWP model grid; we reduce the distribution to have a

zero mean and then scale the amplitude such that the

distribution ranges between 20.001 and 0.001. We fi-

nally perturb the input moisture to the deep convec-

tion scheme as

q
in
5q3 (11 q0) ; (11)

here q is the gridboxmean specific humidity, and q0 is the
perturbation term. For each grid box, the same pertur-

bation is used throughout the atmospheric column.

4. Sensitivity of the CA-SGS parameters

While there are many different matrices one can use

to demonstrate the sensitivity to the parametric choices

and the coupling strategies used in this study, we here

look at the sensitivity of some of the CA-SGS parame-

ters using a single case study in terms of ensemble spread

and skill. A more complete evaluation of the stochastic

scheme will be presented in section 6. Figure 4 shows the

tropical domain average 200-hPa zonal wind (left) and

850-hPa temperature (right) root-mean-square error

(RMSE) and ensemble spread of a 20-member en-

semble using FV3GFS at C96 (;100 km) resolution

for the forecast initialization 1 August 2014. The

RMSE is computed comparing the model output to

the ECMWF interim reanalysis (ERA-Interim; Dee

et al. 2011). The solid lines represent the RMSE,

and the dashed lines represent the ensemble spread

(standard deviation). The different colors show the

impact on ensemble spread and ensemble skill given

different parametric choices or implementation/

coupling strategies. All of the members have initial

condition perturbations. The black curve does not have

any stochastic physics switched on and is thus the ref-

erence experiment (labeled ‘‘control’’). The red curve is

the CA-SGS experiment that we have outlined so far in

this paper (labeled ‘‘CA_control’’), with ncells 5 5 and

nlives 5 30 (model time step 5 900 s), and all the other

lines in Fig. 4 represent single alterations to this CA-SGS

control experiment. [Note that in these sensitivity ex-

periments, we do not apply AR(1) perturbations onto

the deep convective tendencies; this sensitivity will be

examined more carefully in section 6.]

First, we look at the sensitivity of spread and skill

to the transition rules of the CA-SGS to see the im-

pact if we do not condition the cellular automaton

on the SGS-perturbed large-scale fields. In this

case, the cellular automaton strictly follows the ruleset

of Conway’s game of life (green curve labeled ‘‘CA_

global’’). The cellular automaton in this case looks like

MARCH 2019 BENGT S SON ET AL . 901

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/3/893/4848762/m
w

r-d-18-0238_1.pdf by N
O

AA C
entral Library user on 30 June 2020



the pattern shown in the left panel of Fig. 3. The impact

using this global pattern on ensemble spread is very small,

much smaller compared to the experiment where we

condition the cellular automaton on a large-scale field.

One reason may be that conditioning on a large-scale

state yields much larger correlation space and time

scales in the perturbation pattern. It should be noted,

however, that the scales of the cellular automaton

without a large-scale condition can be larger than

what is shown in Fig. 3. This can be achieved by, for

instance, decreasing the number of subgrid cells or

even running the cellular automaton on the native

NWP model grid, as well as by increasing the lifetime

parameter nlives. However, for a comparison with

the same subgrid cells (ncells) and same nlives, it is

clear that the effect on ensemble spread is greater if

we condition the cellular automaton on a perturbed

large-scale field. Furthermore, the cellular automaton

conditioned on the SGS-perturbed vertical velocity

shows an enhanced realism of convective regions. In

particular, the right side of Fig. 3 shows clear signa-

tures of orographic forcing and convergence zones.

This realism is not obvious from global measures

of skill.

After this, we look at the sensitivity to only per-

turbing the closure by addressing the convective plumes

and remove the trigger perturbations to the input spe-

cific humidity following Eq. (11). This sensitivity is

shown by the blue curve labeled ‘‘CA_closure_only.’’

As can be seen, the trigger perturbations are impor-

tant for ensemble spread, since we otherwise only per-

turb the closure (strength) of the convection and do not

allow any new convection to be triggered in neighboring

grid cells.

Last, we investigate the impact of using a skewed

distribution when perturbing our large-scale fields

used to condition the cellular automaton. In this case,

we replace the SGS distribution by a Gaussian dis-

tribution. However, it is important to note that even

though the distribution with which we perturb the

model large-scale field is now given by a Gaussian

white noise, the cellular automaton ‘‘plume’’ number

distribution will still be skewed because of its memory.

Thus, it is not straightforward to assess the implications

of this change by simply looking at ensemble/spread

skill. Nevertheless, the experiment with replacing the

SGS-distribution with a Gaussian distribution is given

by the cyan-colored line labeled ‘‘CA_gaussian,’’ and as

can be seen, there is very little impact on ensemble

spread and skill using this change. We believe there is

still a value in using the SGS distribution for our large-

scale perturbations, as other studies have shown that

the subgrid distribution of convective plumes more

resembles a skewed distribution such as SGS or Poisson

than a Gaussian (Craig and Cohen 2006a; Cohen and

Craig 2006b; Plant and Craig 2008; Plant et al. 2015), and

it gives an opportunity to inform our development of

stochastic physics from observations.

5. Experimental design

We evaluate the impact of the proposed scheme in

FV3GFS by generating both single-member stochastic

and ensemble weather forecasts. As discussed in section 1,

we argue that the large-scale memory term of Eq. (1) is

important, and in this study, we use the first-order au-

toregressive process AR(1) from the SPPT scheme im-

plemented in the FV3GFS model to represent this term

FIG. 4. Ensemble spread and RMSE for various sensitivity tests to parameters of the CA-SGS scheme. (left) The zonal wind at 200 hPa;

(right) the temperature at 850 hPa. The RMSE and ensemble spread is averaged over the tropical region 308S–308N.
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by perturbing the tendencies given by the revised (sto-

chastic) implementation of the Chikira–Sugiyama scheme

outlined above. Table 1 summarizes the setup of the

experiments.

The impact of the scheme is evaluated for 5-day

weather forecasts for both single-member and ensemble

integrations. Initial conditions were generated using

the original spectral GFS model, as opposed to

running a full data assimilation system. The ENS_

CONTROL run does not have any model error rep-

resentation using stochastic physics but uses initial

condition perturbations.

The CA-SGS runs were performed using a vertical-

velocity-conditioned cellular automaton with 5 3 5

subgrid cells and a threshold of 0m s21 for activation of

convective elements. The cellular automaton is spun up

by performing 1000 iterations at the first time step,

where the maximum prescribed lifetime of one cell is

(nlives 3 dt), where nlives 5 30 and dt 5 450 s.

We assess the impact of the scheme by comparing

reforecast temperature, geopotential height, and winds

to ERA-Interim (Dee et al. 2011). The predicted pre-

cipitation is compared against the Tropical Rainfall

Measuring Mission (TRMM) 3B42 high-resolution data

(3 hourly, 0.258 spatial resolution; Huffman and Bolvin

2011). As commonly seen in satellite precipitation esti-

mates, TRMM3B42 has been determined to have large

relative errors at small precipitation rates; however,

time/area averaging significantly reduces the random

error (Huffman et al. 2007; Huffman and Bolvin 2011).

6. Impact on model performance

Because of the space–time filter in NWP models,

large to extreme amounts of precipitation are often

underestimated compared with instantaneous point

observations, particularly when the horizontal grid

spacing is large, and thus vertical motions are not well

represented. Since the stochastic parameterization

presented here is developed to implicitly represent

the variability of subgrid-scale fluctuations of deep

convection, we first look at the frequency distribu-

tion of precipitation in a single-member stochastic run

on weather forecast time scales to see if variability of

precipitation is better represented. This same sort of

assessment was recently conducted by Watson et al.

(2017), who looked at the ECMWF stochastic physics

developments SPPT and SKEBS, evaluating the tropical

rainfall variability on weather forecast time scales in

the Integrated Forecast System (IFS). Meanwhile, Wang

and Zhang (2016) and Wang et al. (2017) looked at how

using the Plant–Craig stochastic convection scheme

(Plant and Craig 2008) affected the frequency distribu-

tion of tropical precipitation in the NCARCAM5 model

for various resolutions and time scales (both weather

forecasts and climate simulations). In all these studies, it

was found that using a stochastic parameterization im-

proves the frequency distribution of tropical precipita-

tion, in particular for large to extreme amounts.

Figure 5a compares the normalized frequency distri-

bution of TRMM rainfall observations with the un-

perturbed control run (CONTROL), a single-member

run using iSPPT on deep convection (iSPPT conv), and

a single-member run using CA-SGS described above

(iSPPT conv1CA-SGS). Both the iSPPT on convection

and the CA-SGS stochastic physics increase the pre-

cipitation variability across the bin distributions. This

increase is larger using CA-SGS, which may be ex-

plained by the fact that we now perturb processes within

the physics with the cellular automaton pattern, as well

as the physics tendencies that are output of the scheme

with theAR(1) pattern. Furthermore, treating processes

within the convection scheme in a stochastic manner

allows for new convection to be triggered, which is not

the case when using iSPPT alone: if the tendency is zero,

the perturbation of the tendency will also be zero. In

addition, perturbing the mass flux within the convec-

tion scheme (which is essentially what is done using

CA-SGS to perturb the cloud number in each grid

box) allows for a more direct perturbation to the

TABLE 1. Experimental design.

Experiment name Horizontal resolutiona No. of ensembles Stochastic physics Period

CONTROL C384, ;25 km — — 1 Jan–31 Mar 2016

iSPPT C384, ;25 km — iSPPT 1 Jan–31 Mar 2016

iSPPT 1 CA-SGS C384, ;25 km — iSPPT 1 CA_SGS 1 Jan–31 Mar 2016

ENS_CONTROL C192, ;50 km 20 — Aug 2014

ENS_iSPPT C192, ;50 km 20 iSPPT Aug 2014

ENS_CA-SGS C192, ;50 km 20 CA_SGS Aug 2014

ENS_iSPPT 1 CA-SGS C192, ;50 km 20 iSPPT 1 CA_SGS Aug 2014

a The horizontal resolution is denoted by CXXX, where each of the six cube faces has XXX3 XXX grid points. Average grid spacing is

roughly 10 000 km/XXX.
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convective precipitation, compared with iSPPT where

only the temperature, humidity, and wind tendencies

out of the convection scheme are perturbed. Similar

reasoning was put forth by Ollinaho et al. (2017) and

Leutbecher et al. (2017), where parameters within the

physics were perturbed using the stochastic perturbed

parameter (SPP) scheme in the ECMWF IFS model.

The difference here is that we have attempted to ad-

dress processes rather than parameters. Another in-

teresting impact on the precipitation variability is that

the problem of too much drizzle is also improved with

CA-SGS by reducing the smallest threshold amounts

compared with CONTROL and iSPPT.

In Fig. 5b, the standard error and mean bias are

shown for the same experiment as described above.

There is a small increase of the bias compared with

CONTROL using the stochastic schemes, and for lon-

ger lead times, this bias is similar in both the iSPPT

experiment and the iSPPT1CA-SGS experiment. The

error is slightly increased using iSPPT and increased

further using iSPPT1CA-SGS. Thus, it appears that the

CA-SGS increases the error due to the increased vari-

ability of the predicted precipitation. The bias using

iSPPT may come from the fact that only perturbing

convection tendencies without perturbing the remaining

physics tendencies may cause inconsistencies that in-

troduce biases; this should be investigated further in the

future. The improvement seen in Fig. 5a suggests that

the standard error is not the best way of evaluating

precipitation skill, as there can be a double penalty due

to location error in a more variable forecast of large

amounts. A careful assessment of precipitation skill

against local observational networks needs to be carried

out in the future using metrics such as fraction skill

score, frequency bias, probability of detection, and

probability of false alarm rate. The increase in bias is a

concern, and it seems mainly (but not solely) related to

the iSPPT perturbations, which need to be addressed in

future work.

The stochastic nature of the cumulus parameteriza-

tion will lead to a different response in the resolved

scale in each ensemble member. Therefore, it is of in-

terest to investigate the impact the scheme has on en-

semble spread. A commonly used metric to understand

if an ensemble system is over- or underdispersive is the

spread–skill relationship. A perfect ensemble in this

regard will have a one-to-one ratio between the stan-

dard error of the ensemble mean and the standard

deviation of the ensemble spread (e.g., Whitaker and

Loughe 1998; Bengtsson et al. 2008).

Figure 6 shows the 5-day forecast ensemble spread

and error for the vertical profiles of temperature and

zonal wind averaged over global longitude bands.

The top panel shows the difference between ENS_

iSPPT and the unperturbed ensemble control. The

ensemble spread is increased, and the ensemble mean

error is reduced in ENS_iSPPT, in particular over the

tropics in the zonal wind field. When we turn on the

stochastic deep convection parameterization through

CA-SGS in addition to iSPPT, the ensemble spread is

increased further, and the ensemble error is reduced

over the tropics, with the exception of a degradation

FIG. 5. (a) Normalized frequency distribution of precipitation rate (mmh21) for the single-member forecast experiments listed in

Table 1: CONTROL (blue), iSPPT (orange), and CA-SGS_iSPPT (red). Forecasts are run at C384 resolution (roughly 25 km 3 25 km),

but regridded to 0.58 grid for comparison with observations. TRMM precipitation observations are regridded to 0.58 resolution (black).

Forecast period is January–March 2016, and forecast length is 5 days. (b) As in (a), but for error standard deviation and bias as a function

of lead time.
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in error at about 100 hPa. Over the subtropics, the

ensemble spread is increased compared to iSPPT

with a mostly neutral impact on skill; however, there

is a tendency of a degradation in error toward the

poles. The CA-SGS without AR(1) perturbations

onto the deep convective tendencies compared to

the control is shown in the bottom panel. The CA_

SGS 1 iSPPT experiment (middle panel) is not

exactly the sum of the individual iSPPT (top panel) and

CA-SGS (bottom panel) experiments since new con-

vection can be triggered from the moisture perturba-

tions by the CA-SGS.

The results from Fig. 6 can be viewed in terms of

single-level domain averages in order to better visu-

alize how the ensemble spread is related to the en-

semble error. Figure 7 shows the 850-hPa zonal wind

and temperature ensemble spread and skill (standard

error) as a function of lead time for the ensemble ex-

periments listed in Table 1. The main impact of the

stochastic physics schemes is, not surprisingly, over the

tropics. The dynamical memory is important to gen-

erate large ensemble spread, as indicated by the iSPPT

experiment, and in addition to iSPPT the CA-SGS can

add a further increase in ensemble spread and a small

reduction in the ensemble mean error.

Next, we look at the model bias comparing our experi-

ment outputs to ERA-Interim. The model temperature

bias at forecast lead time 120 h (day 5) is shown in

Fig. 8 as a vertical distribution of the zonal mean. The

CA-SGS experiment tends to warm the atmosphere,

which leads to a reduction of an existing cold bias

in the control experiment in the 400–150-hPa layer

(upper-left panel). However, it also leads to an am-

plification of an already-existing warm bias around

500 hPa. The iSPPT experiment has no impact on the

model temperature bias. The uniform increase of

temperatures using the CA-SGS scheme may come

from the skewed distribution from the cellular au-

tomata used to perturb the input specific humidity,

and this warrants further investigation.

Last, the impact on the spectral representation of

kinetic energy ensemble spread and error is studied in

Fig. 9 to investigate the uncertainty as a function of

atmospheric scales. The left panel shows all the wave-

numbers, whereas the right panel is zooming in on the

tail of the spectra. Comparing different lead times (not

shown), there is no evidence in an upscale or downscale

cascade of model uncertainty, but rather, as discussed in

section 1, there is an up-amplitude growth of the un-

certainty at all wavenumbers simultaneously, which is in

agreement with other studies (Durran and Gingrich

2014; Durran and Weyn 2016; Weyn and Durran 2017).

The ENS_CA-SGS [without AR(1) perturbations]

shows a small increase in the KE spectral ensemble

FIG. 6. Differences between experiment and control in ensemble spread and standard deviation error of the 5-day forecast of (left)

temperature and (right) zonal winds. (top) Ens_iSPPT–Ens_CONTROL, (middle) Ens_iSPPT_CA_SGS–Ens_CONTROL, and (bot-

tom) Ens_CA_SGS–Ens_CONTROL. SPPT in the figure titles refers to iSPPT applied on convective tendencies only.
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spread at all wavenumbers, even though the scales

on which the perturbations are inserted are close to

the truncation scales of the model. The AR(1) pertur-

bations, ENS_iSPPT (associated with large space/time

scales correlations), are dominating the increase in

ensemble spread at the largest scales, whereas the

increase in ensemble spread at the smallest scales are

the same for ENS_iSPPT and ENS_CA-SGS. The

combination of AR(1) perturbations and CA-SGS

(ENS_CA-SGS1iSPPT) increases the ensemble spread

at all scales, but most efficiently at the smallest scales

(in a relative sense, as the magnitude of the increase is

greater at the larger scales). One reason for this could be

that there is a downscale cascade of uncertainty given

by iSPPT in combination with the local perturbations.

7. Conclusions and outlook

In this study, we proposed a physical-process-based

stochastic parameterization using cellular automata

in a model framework. In this framework of parame-

terization, we first perturb physical processes acting

on the model subgrid scales. Then, the tendencies

themselves are perturbed using a random spatial

pattern with larger decorrelation scales to address the

fact that the uncertainty is dependent on the model

state at earlier times and at a distance from where the

process is occurring.

The question is often raised as to why stochastic

parameterizations need synoptic-scale decorrelation

time and space scales to adequately address uncertainties

associated with physical processes occurring at the

model’s truncation scale. One common explanation is

that some amount of added or implicit numerical

diffusion is typically needed, such that local pertur-

bations near the model truncation are rapidly dam-

ped. However, in practice, at operational centers,

decorrelation scales well beyond the model’s ‘‘effective’’

resolution are chosen in order to achieve the best

results.

One point that we have emphasized is that there is a

need for a dynamical memory term in any sort of

physical parameterization.Up to now, the importance of

this memory term, which is often discussed in statistical

physics, has been given little emphasis in the discussion

of stochastic parameterizations implemented at op-

erational centers. There is memory in the uncertainty

on scales far beyond the truncation scales that needs

to be considered (e.g., Ricciardulli and Sardeshmukh

2002). Although we have used the Mori–Zwanzig

formalism to show that intrinsically there is a need

to include the memory term in stochastic parameter-

izations, there are other ways in the geophysical lit-

erature to account for this term. One way basically

increases the dimensionality of the system by treating

the memory as a red noise (e.g., Newman et al. 1997).

FIG. 7. The 850-hPa meridional wind and temperature ensemble spread (dashed) and ensemble skill (solid) for the ensemble experiments

in Table 1. SH is for the Southern Hemisphere, TR is for the tropics, and NH is for the Northern Hemisphere.
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Another way is to couple the resolved and unresolved

processes explicitly using multiplicative noise. We

have used both of these in our study. The memory on

resolved time scales has been taken into account by

treating it as red noise using the AR(1) process, and

the memory on unresolved time scales has been pa-

rameterized by the CA-SGS.

Much work remains. We plan to perform a coarse-

graining exercise with the FV3GFS model at very high

resolution to see if we can optimize the decorrelation

length scales chosen for the dynamical memory in our

model system. We are also interested in finding out

the minimum complexity needed for the dynamical

memory, though at the moment we use the first-order

autoregressive process AR(1). In the future, we aim to

explore the use of cellular automata to represent a wide

range of scales, from high-resolution subgrid patterns

applied to physical processes to resolutions coarser than

the NWP model patterns applied to the tendencies, in

order to understand if we can turn off SPPT as our proxy

for dynamical memory.

In terms of the physical process perturbations, cel-

lular automata offer a novel approach due to their

self-organizing nature. In our application to deep cu-

mulus convection, we found that the model variability

of precipitation is improved and that some added

variability in the tropics, as well as subtropics, can be

seen in the state variables, although there is consid-

erable room for improvement away from the tropics.

The impact of the cellular automaton is (not surpris-

ingly) strongly linked to the large-scale state on which

we choose to condition it. The choice of large-scale

conditioning state gives some room to control the

scales, range, and physical meaning of the cellular

automata. The framework is quite general, as we can

choose which model large-scale state we would like to

FIG. 8. Vertical distribution of temperature bias at forecast hour 120 h (day 5) for the different ensemble experi-

ments in Table 1 computed against ERA-Interim.
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condition the cellular automaton on and the resolu-

tion of the finer grid, depending on the process that we

would like to address. Future development includes

addressing uncertainty due to turbulence, shallow

convection, radiation, and in-cloud microphysics us-

ing this general framework.

The stochastically generated skewed (SGS) differen-

tial equation is an attractive option to generate physi-

cally based perturbations to the field on which we

condition the cellular automaton. However, its full

advantage for our particular application needs to be

further explored and understood. The shape of the dis-

tribution given by SGS is linked to the moments given

from observations, or large-eddy simulations, and there

are challenges deriving a single set of these moments

that are applicable to simulating the uncertainty of a

subgrid process all over the globe.
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